Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Chinese Journal of Biotechnology ; (12): 2861-2873, 2023.
Article in Chinese | WPRIM | ID: wpr-981237

ABSTRACT

Auto-inhibited Ca2+-ATPase (ACA) is one of the Ca2+-ATPase subfamilies that plays an important role in maintaining Ca2+ concentration balance in plant cells. To explore the function and gene expression pattern of the RcACA gene family in castor, bioinformatics analysis was used to identify the members of the RcACA gene family in castor. The basic physical and chemical properties, subcellular location, protein secondary and tertiary structure, conserved domain, conserved motif, gene structure, chromosome location and collinear relationship, as well as the evolutionary characteristics and promoter cis-acting elements were predicted and analyzed. The expression pattern of the RcACA gene under abiotic stress was analyzed by expression (fragments per kilobase of exon model per million mapped fragments, FPKM) in castor transcriptome data. The results showed that 8 RcACA gene family members were identified in castor, acidic proteins located in the plasma membrane. In the secondary structure of all proteins, the α-helix and random coil is more; the RcACA genes were clustered into three categories, and the design of the genes in the same category was similar to the conserved motif. Both of them had four typical domains, RcACA3-RcACA8 had a Ca2+-ATPase N-terminal autoinhibitory domain. The RcACA gene is mostly located on the long arm of the chromosome and has 2 pairs of collinear relationships. There are more light response elements but fewer hormone-induced elements located upstream of the RcACA coding region. Interspecific clustering showed that the evolution of ACA genes among species was conservative. Tissue expression pattern analysis showed that RcACA genes showed apparent tissue expression specificity, and most of the genes showed the highest expression level in male flowers. Expression analysis under abiotic stress showed that RcACA2-RcACA8 were up-regulated under high salt and drought stress, and RcACA1 was up-regulated at 0-24 h under low-temperature stress, indicating that RcACA genes positively responded to abiotic stresses. The above results provide a theoretical basis for exploring the role of the RcACA gene in castor growth, development and stress response.


Subject(s)
Genome, Plant , Stress, Physiological/genetics , Transcriptome , Promoter Regions, Genetic , Phylogeny , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
China Journal of Chinese Materia Medica ; (24): 642-648, 2023.
Article in Chinese | WPRIM | ID: wpr-970533

ABSTRACT

Wurfbainia villosa fruit is rich in volatile terpenoids, among which pinene is one of the main components and has anti-inflammatory, antibacterial, anti-tumor, and other pharmacological activities. This research group found that W. villosa fruits were rich in α-pinene by GC-MS, and terpene synthase(WvTPS63, formerly known as AvTPS1) with β-pinene as the main product was cloned and identified, but α-pinene synthase had not been identified. In this study, based on the genome data of W. villosa, we screened and found WvTPS66 with highly similar sequences to WvTPS63, identified enzyme functions of WvTPS66 in vitro, and performed a comparative analysis of sequence, catalytic function, expression pattern, and promoter with WvTPS63. Multiple sequence alignment showed that the amino acid sequences of WvTPS63 and WvTPS66 were highly similar and the conservative motif of terpene synthase was almost identical. In vitro enzymatic experiments on catalytic functions showed that both could produce pinene, and the main product of WvTPS63 was β-pinene, while that of WvTPS66 was α-pinene. Expression pattern analysis showed that WvTS63 was highly expressed in flowers, WvTPS66 was expressed in the whole plant, and the highest expression level was found in the pericarp, which indicated that it might be mainly responsible for the synthesis of α-pinene in fruits. In addition, promoter analysis revealed the presence of multiple regulatory elements related to stress response in the promoter regions of both genes. The findings of this study can provide a reference for the functional study of terpene synthase genes and new genetic elements for pinene biosynthesis.


Subject(s)
Terpenes , Amino Acid Sequence , Anti-Bacterial Agents
3.
Chinese Journal of Biotechnology ; (12): 724-740, 2023.
Article in Chinese | WPRIM | ID: wpr-970403

ABSTRACT

SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.


Subject(s)
Fragaria/metabolism , Genes, Plant , Stress, Physiological/genetics , Arabidopsis/genetics , Plant Development , Gene Expression Regulation, Plant , Plant Proteins/metabolism
4.
Chinese Journal of Biotechnology ; (12): 625-639, 2023.
Article in Chinese | WPRIM | ID: wpr-970396

ABSTRACT

Squamosa promoter binding protein-like (SPL) family is a group of important transcription factors involved in the regulation of plant growth and development and the response to environmental stress, but there are few studies in perennial fruit trees such as citrus. In this study, Ziyang Xiangcheng (Citrus junos Sib.ex Tanaka), an important rootstock of Citrus, was used as the material for analysis. Based on plantTFDB transcription factor database and sweet orange genome database, 15 SPL family members were genome-widely identified and cloned from Ziyang Xiangcheng, and named CjSPL1-CjSPL15. Sequence analysis showed that the open reading frame (ORF) length of CjSPLs ranged from 393 bp to 2 865 bp, encoding 130-954 amino acids. Phylogenetic tree divided 15 CjSPLs into 9 subfamilies. Gene structure and conserved domain analysis predicted 20 different conserved motifs and SBP basic domains. Analysis of cis-acting promoter elements predicted 20 different promoter elements, including those related to plant growth and development, abiotic stress and secondary metabolites. The expression patterns of CjSPLs under drought, salt and low temperature stresses were analyzed by real-time fluorescence quantitative PCR (qRT-PCR), and many CjSPLs were significantly up-regulated after stress treatment. This study provides a reference for further study on the function of SPL family transcription factors in citrus and other fruit trees.


Subject(s)
Phylogeny , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Multigene Family , Stress, Physiological
5.
STOMATOLOGY ; (12): 176-181, 2023.
Article in Chinese | WPRIM | ID: wpr-979300

ABSTRACT

@#Tight junction(TJ) is complex dynamic system involved in protein interactions in the paracellular secretory pathway, with both barrier and fence functions. Claudin family, the main section of tight junction strands, will be abnormal in expression pattern in the circumstances of radiation injuries, inflammation, Sj?gren's syndrome, diabetes and other pathological conditions in salivary glands. This change leads to abnormal structure and function of tight junctions, indirectly manifested as salivary gland dysfunction. In addition, the difference of Claudin expression in salivary gland tumors can also be used as an indicator of tumor type and prognosis. This review focuses on the progress of research on common Claudin in salivary glands, including the structure, function, expression patterns of related diseases and their applications. It is believed that the review may provide new ideas for clinical and basic research on Claudin protein-related diseases.

6.
Acta Pharmaceutica Sinica ; (12): 3449-3460, 2023.
Article in Chinese | WPRIM | ID: wpr-999090

ABSTRACT

Anthocyanidin reductase (ANR) is one of the key enzyme in the flavonoid biosynthetic pathway, and its catalytic activity is important for the synthesis of plant anthocyanin. In this study, specific primers were designed according to the transcriptome data of Lonicera japonica Thunb., and the CDS, gDNA and promoter sequences of ANR genes from Lonicera japonica Thunb. and Lonicera japonica Thunb. var. chinensis (Wats.) Bak. were cloned. The results showed that the CDS sequences of LjANR and rLjANR were 1 002 bp, the gDNA sequences were 2 017 and 2 026 bp respectively, and the promoter sequences were 1 170 and 1 164 bp respectively. LjANR and rLjANR both contain 6 exons and 5 introns, which have the same length of exons and large differences in introns. The promoter sequences both contain a large number of light response, hormone response and abiotic stress response elements. Bioinformatics analysis showed that both LjANR and rLjANR encoded 333 amino acids and were predicted to be stable hydrophobic proteins without transmembrane segments and signal peptides. The secondary structures of LjANR and rLjANR were predicted to be mainly consisted of α-helix and random coil. Sequence alignment and phylogenetic analysis showed that LjANR and rLjANR had high homology with Actinidia chinensis var. chinensis, Camellia sinensis and Camellia oleifera, and were closely related to them. The expression levels of LjANR and rLjANR were the highest in flower buds and the lowest in roots. The expression patterns at different flowering stages were similar, with higher expression levels in S1 and S2 stages and then gradually decreased until reaching the lowest level in S4 stage, after a slow increase in S5 stage, the expression levels decreased again. The expression levels of ANR genes in the two varieties showed significant differences in roots, S2 and S5 stages, while the differences in stems, flower buds, S1, S3 and S6 stages were extremely significant. The prokaryotic expression vector pET-32a-LjANR was constructed for protein expression. The target protein was successfully expressed of about 59 kD. This study lays a foundation for further study on the function of ANR gene and provides theoretical guidance for breeding new varieties of Lonicera japonica Thunb.

7.
Journal of Integrative Medicine ; (12): 77-88, 2023.
Article in English | WPRIM | ID: wpr-971639

ABSTRACT

OBJECTIVE@#AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering.@*METHODS@#To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses.@*RESULTS@#One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses.@*CONCLUSION@#This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.


Subject(s)
Abscisic Acid , Isatis/genetics , Multigene Family , Phylogeny , Homeodomain Proteins/genetics , Genome, Plant
8.
Biol. Res ; 55: 4-4, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1383909

ABSTRACT

BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.


Subject(s)
Gene Expression Regulation, Plant , Gossypium/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Molecular Structure , Multigene Family/genetics , Genome, Plant
9.
Protein & Cell ; (12): 6-25, 2022.
Article in English | WPRIM | ID: wpr-929158

ABSTRACT

The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.


Subject(s)
Animals , Humans , Cytoskeleton/genetics , Nervous System Diseases/genetics , Neurons/enzymology , Signal Transduction , p21-Activated Kinases/metabolism
10.
Electron. j. biotechnol ; 51: 1-7, May. 2021. tab, ilus, graf
Article in English | LILACS | ID: biblio-1343303

ABSTRACT

BACKGROUND: This study aimed to explore genetic polymorphisms of the CCKAR gene and their relationship with the growth and development of Qinchuan cattle which could be used as molecular markers for the improvement of the breeding of Qinchuan cattle. RESULTS: Here, we have identified seven single nucleotide polymorphisms (SNPs) at loci g. 1463 C>G; g. 1532 T>A; g. 1570 G>A; g. 1594 C>A; g. 1640 T>C; g. 1677 G>C; and g. 1735 C>T in the coding region of the bovine CCKAR gene. The frequencies identified on allelic and genotypic characteristics have shown that all seven SNPs diverged from the Hardy-Weinberg-Equilibrium. The SNP2, SNP3, SNP6 and SNP7 had the lowest polymorphism information content values, and remaining SNPs were found to be moderate (0.25 < PIC < 0.50). The genotype CG in SNP1 at loci g.1463 C>G had the greatest association with WH, HW, CD and CCF, while the genotype TA at the very same loci was associated with BFT, ULA and IMF content in Qinchuan cattle. The CCKAR gene expression level in adipose tissue, small intestine, liver and skeleton muscle was found to be higher, whereas, the expression level of mRNA in organs of other digestive system including reticulum, abomasum and omasum was moderate. Some expression of CCKAR mRNA was found in the large intestine, kidney and rumen. CONCLUSIONS: In summary, our finding suggested that the CCKAR gene could be used as a potential candidate for the improvement of carcass quality and body measurements of Qinchuan cattle.


Subject(s)
Animals , Cattle , Cattle/genetics , Receptor, Cholecystokinin A/genetics , Genetic Variation , Linkage Disequilibrium , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Digestive System , Livestock , Genotyping Techniques , Gene Frequency , Meat Products
11.
Acta Pharmaceutica Sinica ; (12): 2015-2024, 2021.
Article in Chinese | WPRIM | ID: wpr-887005

ABSTRACT

UDP glucosyltransferase (UDPGT) catalyzes the synthesis of secondary metabolites and plant hormones to regulate plant growth and development, pathogen defense and environmental adaptability. In this study 18 members of the RcUDPGT gene family were cloned from Tibetan Rhodiola crenulata and analyzed using bioinformatics. The tissue-specific expression, abiotic stresses and plant hormones (abscisic acid, auxin, methyl jasmonate) induced expression patterns were identified by real-time quantitative PCR. The bait vector of RcUDPGT (JX228125.1) was constructed to select interacting proteins from an Arabidopsis yeast library. The results of the bioinformatics analysis revealed that RcUDPGT nucleotide sequences were about 1 400 bp and encoded 452-498 amino acids. In the primary protein sequences, C-terminal sequences were more conserved compared with N-terminal regions, which held a PSPG (plant secondary product glycosyltransferase) domain. In the tertiary structures, RcUDPGTs contained a UDP sugar donor recognition binding site. In addition, all genes had multiple phosphorylation sites. The results of qRT-PCR showed that RcUDPGTs genes were expressed in root, stem and leaf. The expression levels were regulated by low temperature/ultraviolet light and various plant hormones (ABA, IAA, MeJA), but the expression patterns were quite different among them. For example, RcUDPGT6, RcUDPGT11, and RcUDPGT17 had the highest expression in leaves and were induced by all three hormones, suggesting that the functions of these genes might be to respond to environmental changes. RcUDPGT9, RcUDPGT10, RcUDPGT14 were most abundantly expressed in roots and were significantly induced by ABA and MeJA hormones, indicating that these genes may be involved in the synthesis and accumulation of salidroside. Yeast two-hybrid results showed that RcUDPGT did not exhibit autoactivation and cell toxicity, and two significant interactional genes were identified, AtKCR1 (AT1G67730.1) and AtSNL4 (AT1G70060). The AtKCR1 gene encodes a β-ketoacyl reductase (KCR) involved in synthesis of very long chain fatty acids. The AtSNL4 gene encodes a homolog of the transcriptional repressor SIN3, which could participate in the ABA hormone signaling pathway and enhance the transcriptional repression of AP2/EREBP class factors in Arabidopsis. These results suggest that the accumulation of the secondary metabolite salidroside in Rhodiola crenulata might be affected by several regulatory mechanisms. The above results may lay the foundation for understanding the adaptive mechanism of Rhodiola crenulata in a high altitude environment and stimulate an in-depth study of the synthesis and accumulation of secondary metabolites in this species.

12.
China Journal of Chinese Materia Medica ; (24): 5270-5277, 2021.
Article in Chinese | WPRIM | ID: wpr-921672

ABSTRACT

Dirigent(DIR) proteins are involved in the biosynthesis of lignin, lignans, and gossypol in plants and respond to biotic and abiotic stresses. Based on the full-length transcriptome of Schisandra chinensis, bioinformatics methods were used to preliminarily identify the DIR gene family and analyze the physico-chemical properties, subcellular localization, conserved motifs, phylogeny, and expression patterns of the proteins. The results showed that a total of 34 DIR genes were screened and the encoded proteins were 156-387 aa. The physico-chemical properties of the proteins were different and the secondary structure was mainly random coil. Half of the DIR proteins were located in chloroplast, while the others in extracellular region, endoplasmic reticulum, cytoplasm, etc. Phylogenetic analysis of DIR proteins from S. chinensis and the other 8 species such as Arabidopsis thaliana, Oryza sativa, and Glycine max demonstrated that all DIR proteins were clustered into 5 subfamilies and that DIR proteins from S. chinensis were in 4 subfamilies. DIR-a subfamily has the unique structure of 8 β-sheets, as verified by multiple sequence alignment. Finally, through the analysis of the transcriptome of S. chinensis fruit at different development stages, the expression pattern of DIR was clarified. Combined with the accumulation of lignans in fruits at different stages, DIR might be related to the synthesis of lignans in S. chinensis. This study lays a theoretical basis for exploring the biological functions of DIR genes and elucidating the biosynthesis pathway of lignans in S. chinensis.


Subject(s)
Fruit/genetics , Lignans/analysis , Phylogeny , Schisandra , Sequence Alignment
13.
Journal of Zhejiang University. Science. B ; (12): 476-491, 2021.
Article in English | WPRIM | ID: wpr-880752

ABSTRACT

Starch is the predominant compound in bulb scales, and previous studies have shown that bulblet development is closely associated with starch enrichment. However, how starch synthesis affects bulbification at the molecular level is unclear. In this study, we demonstrate that

14.
Chinese Traditional and Herbal Drugs ; (24): 5590-5597, 2020.
Article in Chinese | WPRIM | ID: wpr-846089

ABSTRACT

Objective: To clone a WRKY protein gene SmWRKY14 with full length cDNA from Salvia miltiorrhiza and carry out bioinformatics and expression analysis in different tissues and response to environmental factors and phytohomone. Methods: The PCR was preformed based on the sequence of Unigene (c50007_g1) searched from our transcriptome database, and characteristics of physiochemical properties, conserved domains and structure prediction of the protein were determined using a series of bioinformatics tools. The analyses of multiple alignment and phylogenetic tree were performed using DNAMAN and MEGA 6.0, respectively. Real-time quantitative PCR was used for gene expression analysis. Results: In this study, the full length cDNA of SmWRKY14 was 1103 bp in size, encoding a 244-aa protein with a molecular weight of 27.6 KDa and an isoelectric point of 8.19. SmWRKY14 was an unstable hydrophilic protein containing characteristic and conserved WRKY domain without signal peptide or transmembrane domain. The main secondary structure of the amino acid sequences was random coil. Moreover, multiple sequence alignments and phylogenetic trees showed that SmWRKY14 protein had high homology with WRKY14 of Diospyros kaki. Quantitative real-time PCR indicated that SmWRKY14 constitutively expressed in the roots, stems, leaves and flowers of S. miltiorrhiza and was strongly induced by methyl jasmonate, abscisic acid, gibberellins, and mechanical wound, which indicated SmWRKY14 could participate in regulation of biosynthesis of tanshinones and defense process. Conclusion: The gene sequences of SmWRKY14 was successfully cloned and the bioinformatics and expression pattern analysis was carried out, which will provide a foundation for further research on the molecular mechanism of regulation of tanshinones synthesis and response to defense process in S. miltiorrhiza.

15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 582-593, 2020.
Article in English | WPRIM | ID: wpr-827210

ABSTRACT

Camptotheca acuminata produces camptothecin (CPT), a monoterpene indole alkaloid (MIA) that is widely used in the treatment of lung, colorectal, cervical, and ovarian cancers. Its biosynthesis pathway has attracted significant attention, but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors (TFs) remains unclear. In this study, a systematic analysis of the AP2/ERF TFs family in C. acuminata was performed, including phylogeny, gene structure, conserved motifs, and gene expression profiles in different tissues and organs (immature bark, cotyledons, young flower, immature fruit, mature fruit, mature leaf, roots, upper stem, and lower stem) of C. acuminata. A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies, including AP2 (26 genes), DREB (61 genes), ERF (92 genes), RAV (18 genes), and Soloist (one gene). The combination of gene expression patterns in different C. acuminata tissues and organs, the phylogenetic tree, the co-expression analysis with biosynthetic genes, and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C. acuminata might be involved in CPT synthesis regulation, which exhibit relatively high expression levels in the upper stem or immature bark. Among these, four genes (CacAP2/ERF123, CacAP2/ERF125, CacAP2/ERF126, and CacAP2/ERF127) belong to the ERF-B2 subgroup; two genes (CacAP2/ERF149 and CacAP2/ERF152) belong to the ERF-B3 subgroup; and two more genes (CacAP2/ERF095 and CacAP2/ERF096) belong to the DREB-A6 subgroup. These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C. acuminata.

16.
Neuroscience Bulletin ; (6): 530-544, 2020.
Article in English | WPRIM | ID: wpr-826998

ABSTRACT

Astrocytes are the most abundant cell type in the central nervous system (CNS). They provide trophic support for neurons, modulate synaptic transmission and plasticity, and contribute to neuronal dysfunction. Many transgenic mouse lines have been generated to obtain astrocyte-specific expression of inducible Cre recombinase for functional studies; however, the expression patterns of inducible Cre recombinase in these lines have not been systematically characterized. We generated a new astrocyte-specific Aldh1l1-CreER knock-in mouse line and compared the expression pattern of Cre recombinase between this and five widely-used transgenic lines (hGfap-CreER from The Jackson Laboratory and The Mutant Mouse Resource and Research Center, Glast-CreER, Cx30-CreER, and Fgfr3-iCreER) by crossing with Ai14 mice, which express tdTomato fluorescence following Cre-mediated recombination. In adult Aldh1l1-CreER:Ai14 transgenic mice, tdTomato was detected throughout the CNS, and five novel morphologically-defined types of astrocyte were described. Among the six evaluated lines, the specificity of Cre-mediated recombination was highest when driven by Aldh1l1 and lowest when driven by hGfap; in the latter mice, co-staining between tdTomato and NeuN was observed in the hippocampus and cortex. Notably, evident leakage was noted in Fgfr3-iCreER mice, and the expression level of tdTomato was low in the thalamus when Cre recombinase expression was driven by Glast and in the capsular part of the central amygdaloid nucleus when driven by Cx30. Furthermore, tdTomato was clearly expressed in peripheral organs in four of the lines. Our results emphasize that the astrocyte-specific CreER transgenic lines used in functional studies should be carefully selected.

17.
Electron. j. biotechnol ; 41: 37-47, sept. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087161

ABSTRACT

Background: Circular RNAs, a novel class in the eukaryotic transcriptome, are characterized by the 3' and 5' ends that are covalently joined in a covalently closed loop without free ends. Circular RNAs are considerably stable molecules and act as microRNA sponges with regulatory potential to the protein-coding genes. Results: Eight circular RNAs were found to be significantly upregulated at anagen skin tissue of cashmere goat compared with their counterparts at telogen. Rich and complex regulatory patterns were revealed among the eight upregulated circular RNAs at anagen and related miRNAs with their potential regulatory genes. The potential regulatory genes of eight upregulated circular RNAs at anagen were involved in several pathways related to the main physiological process of hair follicle, such as histone acetylation and axon. For chi_circ_1926, chi_circ_3541, chi_circ_0483, chi_circ_3196, and chi_circ_2092, overall, the relative expression in secondary hair follicle exhibited highly similar trends with their corresponding host genes during the different stages of the hair follicle cycle. However, the expression trends of chi_circ_0100, chi_circ_2829, and chi_circ_1967 were found to diverge from their corresponding host genes during the different stages of the hair follicle cycle. Conclusions: A total of eighteen circular RNAs were identified and characterized from skin tissue of cashmere goat. The eight upregulated circular RNAs at anagen might have significant roles in the secondary hair follicle of cashmere goat. Our results would provide a novel regulatory layer to elucidate the molecular mechanisms underlying the development of secondary hair follicle and the growth of cashmere fiber in cashmere goat.


Subject(s)
Animals , Goats/genetics , Hair Follicle/growth & development , RNA, Circular/genetics , Skin , Gene Expression , Computational Biology , MicroRNAs , Eukaryotic Cells , Gene Regulatory Networks , Transcriptome , RNA, Circular/metabolism
18.
J Genet ; 2019 Jul; 98: 1-9
Article | IMSEAR | ID: sea-215420

ABSTRACT

The cassava grows well on low-nutrient soils because of its high-affinity to absorb nitrate. However, the molecular mechanisms by which cassava adapts itself to this environment remain elusive, although we have cloned a putative gene named MeNRT2.1 which has a crucial role in high-affinity nitrate transporter from cassava seeding. Here, the expression pattern of MeNRT2.1 was further assessed using the GUS activity driven by MeNRT2.1 promoter in Arabidopsis transformation plants. The GUS activity was monitored over time following the reduction of nitrate supply. The GUS gene expression not only peaked in roots after 12 h in 0.2mM nitrate media, but also stained stems and leaves. Arabidopsis plants with overexpression of MeNRT2.1 increased the biomass compared to the wild type on rich nitrogen (N-full) media. However, chlorate sensitivity analysis showed that Arabidopsis plants expressing MeNRT2.1 were more susceptable to chlorate than wild type. Significantly, after growing for 15 days on media containing 0.2mM nitrate concentration, wild-type plants became yellowor died, while the transgenic MeNRT2.1 Arabidopsis plants maintained normal growth. With significant increases in the amount of 15NO− 3 uptake in roots, the MeNRT2.1 plants also increased the contents of chlorophyll and nitrate reductase. Taken together, these results demonstrate that MeNRT2.1 has an important role in adaptation to low nitrate concentration as a nitrate transporter.

19.
J Genet ; 2019 Feb; 98: 1-11
Article | IMSEAR | ID: sea-215373

ABSTRACT

Homeobox proteins (HOXs) comprise a large family in eukaryotes and share a highly conserved DNA-binding motif, the homeodomain (HD). HOXs play an important role in the regulation of plant growth, development and stress response. However, systematic analysis and expression profiling of these genes have not been reported in Malus domestica. In this study, a total of 207 HOXs of M. domestica (MdHOXs) were identified and classified into 11 distinct subfamilies, and an unclassified group according to their functional domains. The MdHOXs were localized in all 17 chromosomes with various densities and a majority of them tended to form gene clusters. Analysis of the Ka/Ks ratios suggested that the duplicated genes of MdHOXs mainly underwent purifying selection with restrictive functional divergence after the duplication events. The expression of MdHOXs has organ specific characteristics and were divided into seven different groups. Stress-related cis-acting elements were prevalent in the upstream sequence of MdHOXs by systematic analysis. To explore the response to abiotic stress, eight MdHOXs were randomly selected to investigate their expression using quantitative real-time polymerase chain reaction. Transcription levels of MdHOXs were upregulated in the leaves and roots under cold, osmotic, high salinity or exogenous ABA treatments, which suggested that they may take part in the plant response to abiotic stress. These results provided basic information of HOXs in apple and will further contribute to the functional research of MdHOXs, especially the response to abiotic stress.

20.
China Journal of Chinese Materia Medica ; (24): 2038-2045, 2019.
Article in Chinese | WPRIM | ID: wpr-773131

ABSTRACT

The family of flavonoid 3-O-glucosyltransferase catalyzes the modification of anthocyanin from unstable-structure to stable-structure. In this study,based on homology cloning and transcriptome library,we isolated the full-length c DNA of UDP-glucose: flavonoid 3-O-glucosyltransferase( named SmUF3GT) from the flower tissues of S. miltiorrhiza. This gene was consisted of 1 353 bp open reading frames( ORF) encoding 450 amino acids. And the SmUF3GT protein was performed for the bioinformatic analysis. Our results showed that the protein was preliminary localized in the Golgi and peroxisome of cytosol,as well as plasma membrane and cell nuclear.QRT-PCR analyses indicated that SmUF3GT expressed differently in all tissues and organs but roots of S. miltiorrhiza and S. miltiorrhiza f.alba. During floral development,the expression of SmUF3GT showed a trend of rising fist and then down in purple-flower Danshen,whereas decreasing sharply fist and then slowly in white-flower Danshen. The present study provides basic information for further research on the network of synthesis and accumulation of flavonoids in S.miltiorrhiza.


Subject(s)
Cloning, Molecular , Flowers , Gene Expression Regulation, Plant , Glucosyltransferases , Genetics , Open Reading Frames , Plant Proteins , Genetics , Salvia miltiorrhiza , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL